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Abstract

This paper proposes a new least absolute shrinkage and selection operator (lasso) for es-
timating panel vector autoregressive (PVAR) models. By allowing for interdependencies
and heterogeneities across cross-sectional units, typically the number of parameters of
PVAR models is too large to estimate using ordinary least squares. The penalized re-
gression this paper introduces ensures the feasibility of the estimation by specifying a
shrinkage penalty that contains time series and cross section characteristics; thereby, ac-
counting for the inherent panel structure within the data. Furthermore, using the weighted
sum of squared residuals as the loss function enables the lasso for PVAR models to take
into account correlations between cross-sectional units in the penalized regression. Given
large and sparse models, simulation results point towards advantages of using lasso for
PVARs over OLS, standard lasso techniques as well as Bayesian estimators in terms of
mean squared errors and forecast accuracy. Empirical forecasting applications with up to
ten countries and four variables support these findings.
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1. Introduction

Growing international interlinkages in the financial and real sector are a defining fe-
ature of the global economy and have risen in importance over recent decades. This in-
volves major economic policy implications as highlighted for example by numerous IMF
reports and notes on spillovers. Theoretical papers demonstrate that ignoring internatio-
nal spillovers could lead to biased impulse response functions and to inaccurate forecasts.
Georgiadis (2017) stresses that the accuracy of spillover effects increases significantly
when they are estimated with multi-country models instead of bilateral vector autoregres-
sive models. Furthermore, leaving out variables capturing international connections could
lead to an omitted variable bias impacting structural analyses, as discussed by, for exam-
ple, Lütkepohl (2014). In addition, Pesaran et al. (2009) point out that not accounting for
linkages across countries can lead to less accurate forecasts of macroeconomic variables.
Consequently, multi-country models with several variables, such as panel vector autore-
gressive (PVAR) models, are necessary to capture global spillovers in economic analyses.

The strength of PVARs is to account for interdependencies and heterogeneities across
nations by jointly modeling multiple variables of several economies. PVARs enable the
modeling of dynamic interdependencies by augmenting country specific models with lag-
ged foreign variables. These models allow for static interdependencies measured by po-
tential non-zero covariances between the error terms of different countries. Moreover,
PVARs take cross-country heterogeneities into account by specifying country-specific
coefficient matrices. However, estimating these models is challenging because a large
number of parameters is usually set against a short time series. Due to the curse of dimen-
sionality estimation of these models is thus often infeasible.

This paper proposes a new least absolute shrinkage and selection operator (lasso) that
is suitable for estimating PVAR models. It provides a solution to the curse of dimen-
sionality problem by using the panel structure to ensure the estimation feasibility. The
paper establishes the asymptotic oracle properties of the lasso for PVARs. That means,
asymptotically the lasso selects the true variables to be included in the model and estima-
tes non-zero parameters as efficiently as if the true underlying model is known. The finite
sample properties of the lasso for PVAR models are confirmed in simulation studies.

The proposed lasso estimator takes the panel structure inherent to the data into account
and allows for an unrestricted covariance matrix at the same time. This is achieved by
including penalty terms incorporating time series and cross-sectional properties. Further-
more, the modification of the penalty term is combined with specifying the loss function
of the estimation problem as the weighted sum of squared residuals, thereby, accounting
for the correlation between error terms of different cross section units.

In general, the lasso, as proposed by Tibshirani (1996), regulates the dimension of the
model by constraining the estimation problem with a linear penalty term. The penaliza-
tion determines the sum of the absolute values of the regression coefficients, that is, the
L1-norm of the coefficient matrix, to be less than a fixed value. Thus, the penalty term
governs the degree of shrinkage. By forcing some coefficients to be zero and shrinking
others, the lasso chooses the variables to be included in the model.

The main advantages of the lasso technique applied here are threefold.1 Firstly, the

1Other methods to ensure the feasibility of the estimation are factor approaches, Bayesian shrinkage
priors, selection priors, and classical shrinkage methods, such as the ridge regression. Some that are used
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specified penalty parameters of the lasso for PVARs account for the inherent panel struc-
ture within the data. The penalty terms build on a specific expected structure in panel data
models. That is, interdependencies are assumed to only exist between specific variables
and cross sections combinations and decrease over lags. The lasso uses this structure to
reduce the number of dimensions in the system by setting specific coefficients to zero.
In particular, the penalty terms capture that more recent lags provide more information
for the estimation than more distant ones and that lags of domestic variables are more
important than lags of foreign variables. As demonstrated by Song and Bickel (2011), Ni-
cholson et al. (2016), and Nicholson et al. (2017), including grouping structures or time
series properties in the specification of the lasso for estimating VARs can improve fore-
cast accuracy compared to the normal lasso penalty. The authors let the penalty term vary
across lags and include grouping structures by using group lasso techniques as proposed
by Yuan and Lin (2006). This allows them to capture similar sparsity patterns in the coef-
ficient matrix. Likewise, contributions on Bayesian selection priors for PVARs support
that accounting for the inherent panel dimension within the data can enhance forecasting
performance.2

Secondly, considering an unrestricted covariance matrix by the specification of the
loss function includes possible correlations between error terms in the estimation of the
parameters. In penalized regressions, coefficients derived using generalized least squares
deviate from those derived by ordinary least squares. Using the sum of squared residuals
as the loss function disregards possible correlations between variables, thereby restricting
the covariance matrix to the identity matrix. Hence, this procedure imposes strict assump-
tions on the dependence structure between the cross-sectional units. Lee and Liu (2012)
show this for the use of lasso for VAR models. Basu and Michailidis (2015), Davis et al.
(2015), and Ngueyep and Serban (2015) modify the loss functions in the lasso optimiza-
tion for VAR models and allow for unrestricted covariances in the penalized estimation.

Thirdly, the lasso for PVARs benefits from the same properties as the lasso proposed
by Tibshirani (1996). That is, the lasso reduces the dimension of the estimated model.
Thereby, it ensures the feasibility of the estimation if the number of parameters per equa-
tion exceeds the number of observations. Furthermore, the lasso simultaneously selects
and estimates the model. It allows for a flexible lag structure across equations since the
lasso can choose different lag orders for each equation of the model. Moreover, the lasso
is able to improve forecast prediction accuracy by reducing the variance of the predicted
values.

The lasso for PVARs is of interest for empirical work since it provides a solution to
ensure the estimation feasibility for PVAR models. That is relevant since, first, PVAR
models are typically large including several countries and variables per country to cap-
ture macroeconomic relations. Second, the dimension of PVARs grows fast as adding a
country increases the number of equations and columns of the coefficient matrices while
adding variables means including them for each country. The lasso for PVARs can be
used for estimating reduced form VARs. It can select the subset of variables that should
be included in the model and serve as a flexible lag length selection tool. Due to the se-
lection of the relevant variables the PVAR model estimated via lasso is easily interpretable
and might be used for further structural analysis or forecasting.

for PVARs are described in section 2.5 in detail.
2See, for example, Koop and Korobilis (2015b), Korobilis (2016) and Schnücker (2016).

3



By introducing the lasso for PVARs, this paper contributes, firstly, to the literature on
the use of the lasso techniques for VAR models and, secondly, to the literature on estima-
tion procedures for PVAR models. Hsu et al. (2008) establish the usage of the lasso for
VAR models. The authors, along with Kascha and Trenkler (2015), report that the lasso
improves forecast performance compared to the use of information criteria for model se-
lection. Ren and Zhang (2010) and Ren et al. (2013) build on Zou (2006), who propose
adaptive weights for penalizing coefficients differently, and develop adaptive lasso techni-
ques for VAR models. Their results provide evidence that the adaptive lasso outperforms
the lasso in terms of forecasting performance, thus indicating the benefit of coefficient
specific penalties. Kock and Callot (2015) establish non-asymptotic oracle inequalities
for the lasso and adaptive lasso for high-dimensional VAR models. The authors further
show that the lasso provides asymptotically consistent estimates and that the adaptive
lasso is asymptotically equivalent to the least squares estimator that only includes true
non-zero parameters.3

To date, two main extensions of Tibshirani’s lasso are proposed in the context of VAR
models. As mentioned, one strand of the literature broadens the specification of the pen-
alty term to include special characteristics. The second group modifies the loss function in
order to allow for unrestricted covariance matrices. However, the papers are either part of
the first or the second group. One exception is Ngueyep and Serban (2015), who propose
a penalized log-likelihood scheme applying penalties for higher lags and within group or
between group penalties. Thus, the authors take into account the covariance matrix and
allow for special characteristics. Yet, they still restrict the covariance matrix in their ap-
proach to a block structure by assuming no dependence across groups. This paper fills the
gap by combining the weighted sum of squared residuals as the loss function with penalty
terms that incorporate data properties.

Furthermore, the paper extends the current literature on the estimation of PVAR mo-
dels. As yet, the literature mainly uses three kinds of model selection methods. Ca-
nova and Ciccarelli (2004) and Canova and Ciccarelli (2009) propose a Bayesian cross-
sectional shrinkage approach factorizing the parameters into lower dimensional factors,
thereby reducing the number of parameters to estimate. Canova et al. (2012), studying dy-
namics of the European business cycle, and Ciccarelli et al. (2016), analyzing spillovers in
macro-financial linkages across developed economies, apply the cross-sectional shrinkage
approach. Billio et al. (2014) extend the approach to a Markov-switching model. Koop
and Korobilis (2015a) broaden it to time-varying parameter PVAR models additionally
allowing for time-varying covariance matrices. An issue with this procedure is that the
structural identification is more complex since the error term includes two components
coming from the equation estimating the factorized parameters and from the estimation
of the VAR model.

A second Bayesian approach is introduced by Koop and Korobilis (2015b), who sug-
gest a selection prior for PVAR models called stochastic search specification selection.

3This paper focuses on the lasso estimated in a frequentist way and does not cover Bayesian lasso
approaches. Bayesian lasso variants are, for example, discussed by Park and Casella (2008) and Kyung
et al. (2010). Korobilis (2013), Gefang (2014), and Billio et al. (2016) use Bayesian lasso approaches for
VAR models. Additionally, papers use the lasso for panel data regressions. Since this paper concentrates
on the estimation of panel VAR models, these approaches are not further discussed. Other contributions
include Ando and Bai (2016) and Su et al. (2016).
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Based on a hierarchical prior, restrictions that specify no dynamic interdependencies,
no static interdependencies, and homogeneity across cross-sectional units are searched.
Schnücker (2016) develops the approach further by allowing for a more flexible panel
structure. These papers provide evidence that accounting for the inherent panel structure
in the data is beneficial in terms of improved forecast accuracy.

A third way is to assume no dependence or homogeneity across the panel units.4 The
assumptions must be based on a solid theoretical background. Estimation procedures for
these kinds of models are described in Canova and Ciccarelli (2013) and Breitung (2015).

The results of three simulations and an empirical application support the use of the
lasso for PVARs. It improves the forecast accuracy measured by mean squared forecast
errors relative to estimating the PVAR with OLS, relative to Bayesian panel VAR met-
hods, and relative to single country models. Accounting for the panel dimension in the
penalty terms increases the forecast performance as using a lasso approach without such
specific penalty terms leads to larger mean squared forecast errors. The gain in forecast
accuracy relative to other estimation techniques is, in particular, found for large systems
in simulations and an empirical application. For smaller models, the lasso for PVARs
performs equally to the models of comparison.

Furthermore, the dimension reduction of the lasso techniques results in smaller mean
squared errors for all simulations compared to OLS. The benefit in terms of lower mean
squared error is higher for large and sparse models. The mean squared errors of the lasso
techniques are in the same range with Bayesian panel VAR methods and single country
models.

In the following, the lasso for PVAR models is introduced and its asymptotic pro-
perties are discussed. Other estimation strategies for PVARs are reviewed. Next, three
simulation studies evaluate the performance of the lasso for PVARs along different crite-
ria. A forecasting exercise is conducted in section four while section five concludes.

2. The lasso for PVARs

2.1. PVAR Model
Panel vector autoregressive models include several countries and country-specific va-

riables in one model. A PVAR with N countries and G variables per country is given by

yit = Ai1Yt−1 + Ai2Yt−2 + ... + AipYt−p + uit, (1)

where yit denotes a vector of dimension [G × 1] for country i with i = 1, ...,N.5 The
Yt−P = (y′1t−P, ..., y

′
Nt−P)′ are of dimension [NG × 1] and the coefficient matrices AiP of

dimension [G × NG] for P = 1, ..., p. The uit ∼ N(0,Σii) and the covariance matrices
across countries are given by Σi j for i , j.

In compact form, the PVAR model can be written as

Yt = BXt−1 + Ut, (2)

4Examples setting assumptions include Love and Zicchino (2006), Gnimassoun and Mignon (2016), and
Attinasi and Metelli (2017), assuming homogeneity and no dynamic interdependencies, while Ciccarelli
et al. (2013) or Comunale (2017) restrict for no dynamic interdependencies. Prez (2015) and Wieladek
(2016) use a Bayesian approach and assume no dynamic interdependencies.

5Although this specification does not include a constant, it can be extended to include one.
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where Yt = (y′1t, ..., y
′
Nt)
′ and the coefficient matrix B is of dimension [NG × NGp]. The

matrix Xt−1 includes all lagged variables, Xt−1 = (Yt−1, ...,Yt−p)′, and is of dimension
[NGp × 1]. The Ut is normally distributed with mean zero and covariance matrix Σ of
dimension [NG × NG]. The unrestricted PVAR model allows for dynamic and static in-
terdependencies as well as for heterogeneities across countries. The Xt−1 includes lagged
values of every variable in each equation. The unrestricted B-matrix and the covariance
matrix Σ enable country specific coefficients and correlations between error terms of all
possible variable-country combinations. This PVAR model has (NG)2 p parameters of the
B-matrix and NG(NG+1)

2 parameters of Σ to estimate. Variables are ordered per country me-
aning that the first G rows of the system model variables of country one, while the rows
NG −G + 1 to NG describe the variables of country N. The large number of parameters
can lead to the curse of dimensionality problem. The lasso provides a solution to deal
with this issue.

2.2. The lasso Estimator
Tibshirani (1996) proposed the lasso for a linear regression model with multiple re-

gressors. The coefficient estimates are obtained by minimizing the sum of squared residu-
als subject to a linear constraint. The penalization term regulates the sum of the absolute
values of the regression coefficients, the L1-norm of the coefficients, to be less than a fixed
value. The lasso forces the coefficients to lie in a specific area that is centered around zero.
Thereby, it shrinks some coefficient and constrains other to be equal to zero. The L1-norm
determines the geometric shape of this constraint region. It has two properties that are
crucial for the features of the lasso. Coefficients can equal zero due to the possibility of
corner solutions and, secondly, the constraint region is convex, which simplifies the opti-
mization procedure.

Introducing a shrinkage penalty in the regression enables coping with situations in
which T < NGp, can improve prediction accuracy, and produce interpretable models.6 If
T < NGp, the number of parameters per equation exceeds the number of observations,
ordinary least squares is not feasible since no unique solution exists. If the true model is
sparse, meaning that some of the true coefficients are zero, the lasso finds a solution by
constraining the estimation. Furthermore, the lasso reduces the variance of the estimated
coefficients, thereby improving prediction accuracy. Due to the selection property of the
lasso the interpretation of the model is enhanced. By setting some coefficients to zero, a
subset of variables that simplifies the identification of core driving variables of the system
is selected. The three mentioned properties clarify for which situations the lasso is well
suited, namely for large, sparse systems for which the researcher’s aim is to provide fore-
casts and to analyze main driving forces. The bias introduced by the lasso is accepted in
order to gain these properties.

2.3. Extended Penalty Term and Loss Function for PVARs
The optimization problem of the lasso for PVAR models modifies the lasso of Tibs-

hirani (1996) in two ways. The weighted sum of squared residuals is used as the loss
function instead of the sum of squared residuals. Furthermore, a penalty term capturing

6Tibshirani (1996) and Hastie et al. (2015) discuss these three properties in detail.
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the time series and cross section properties is introduced. The resulting optimization pro-
blem is given by:

argmin
bkm

1
T

K∑
k=1

K∑
j=1

ωk j

Yk −

K p∑
m=1

bkmXm


Y j −

K p∑
m=1

b jmXm


′

+

K∑
k=1

K p∑
m=1

λkm |bkm| ,

(3)

where bkm is the element of the B-matrix in the k-th row and m-th column. K is the num-
ber of countries times the number of variables, K = NG. The Y j and Xm are of dimension
[1 × T ] for j = 1, ...,K and m = 1, ...,K p. The ωk j is an element of the inverse of the
covariance matrix, Σ−1 = Ω. The λkm is the penalty parameter and |bkm| denotes the ab-
solute value of bkm. As common in the lasso literature, Y is demeaned and standardized.
The latter is done in order to have comparable units for all variables when choosing the
penalty parameters.

The optimization problem is solved using a coordinate descent algorithm as proposed
in Friedman et al. (2007) and Friedman et al. (2010).7 This iterative algorithm updates
from Bn to Bn+1 by a univariate minimization over a single bkm. It iterates over all elements
in B till convergence is reached.8 The coordinate descent algorithm can be used since the
non differentiable part of the optimization problem is separable. Convexity and separa-
bility of the problem ensure existence of a global solution. The lasso estimator, which is
called lassoPVAR in the following, has the form:

blasso
km = sign

(
b̃km

) (∣∣∣b̃km

∣∣∣ − λkmT
2ωkkXmX′m

)
(4)

with

b̃km =

∑K
j,k ω jk(Y j −

∑K p
i=1 b jiXi)X′m

ωkkXmX′m
+

(Yk −
∑K p

i,m bkiXi)X′m
XmX′m

. (5)

As pointed out by Lee and Liu (2012), in a VAR model correlations between error terms
have an impact on the estimated parameters in a restricted regression.9 It can be easily
seen from the above stated lasso estimator blasso

km that the covariance affects the value of
blasso

km for elements ωkk , 1 and ω jk , 0 for j , k. When Σ equals the identity matrix, the
estimator blasso

km reduces to the lasso estimator based on the sum of squared residuals as the
loss function.

As yet, the literature on estimating VAR models with the lasso follows two main
approaches to estimate the covariance matrix: a two-step approach or a joint likelihood
approach. Lee and Liu (2012) describe two plug-in methods, where in a first step either the

7The optimization algorithm and the derivation of the lasso estimator are described in detail in Appendix
C and Appendix A. For more details regarding the optimization algorithm see Friedman et al. (2007),
Friedman et al. (2010) and Hastie et al. (2015).

8Convergence is achieved when max(|Bn − Bn−1|) < ε. The ε is chosen such that the lasso solution
converges to the OLS estimate for a penalty parameter set to zero and weighted sum of squared residuals as
the loss function.

9See Lee and Liu (2012) for details. This is similar to the well-known fact that for VAR models, OLS is
unequal to GLS in the case of parameter constraints.
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coefficient matrix or the covariance is estimated, followed by the estimation of the other.
The authors use a graphical lasso (glasso), following, in particular, Friedman et al. (2008).
In addition, they present a doubly penalized likelihood approach to jointly estimate the
coefficient and covariance matrix in a L1-regularized regression. Basu and Michailidis
(2015) propose another option by estimating the covariance matrix using residuals of an
initial lasso estimation with sum of squared residuals or a glasso approach. Further, they
present a joint penalized maximum likelihood approach. Davis et al. (2015) compare
their two-stage approach using tools from the frequency domain with a lasso approach
weighted with the inverse covariance matrix. Updating until convergence, the covariance
matrix is estimated using the residuals of the lasso estimation. Ngueyep and Serban (2015)
propose a penalized log-likelihood scheme applying penalties for higher lags and within
group or between group penalties.

In this paper, the covariance matrix Σ is estimated using a two-step approach. The first
step estimates the covariance matrix via glasso, while in the second step the estimated Σ̂

is plugged into the lasso estimation of blasso
km . Friedman et al. (2008) demonstrate that the

covariance matrix is estimated by maximizing the Gaussian penalized log-likelihood

log det(Ω) − tr(S Ω) − ρ ||Ω| | (6)

with respect to the nonnegative definite inverse of the covariance matrix Ω = Σ−1. The
matrix S is the empirical covariance, tr(S Ω) is the trace of S Ω and ||Ω| | is the sum of the
absolute values of each element of Ω. For ρ > 0 the regression is penalized, while for
ρ = 0 the classical maximum likelihood estimator is obtained. The details of the glasso
are in Appendix B. As pointed out by Banerjee et al. (2008) Σ̂ is even in the case when
the number of variables is larger than the number of observations invertible due to the
regularization using ρ > 0.

An alternative way to estimate the covariance matrix, as done by, for example, Tibshi-
rani (1996), is to use the least squares estimator Σ̂ = 1

T−kk (Y−B̂X)(Y−B̂X)′, where kk is the
number of degrees of freedom. The degrees of freedom adjusted least square estimator is
a consistent estimator for constrained regression problems, although zero restrictions can
reduce the number of degrees of freedoms. Another option is to use the number of degrees
of freedom for the lasso, which is the number of non-zero parameters.10 However, in con-
trast to the glasso estimation, this approach can lead to problems for the invertability of
the covariance matrix in large systems. This is why the glasso approach is used here.

The second extension of the lasso for PVARs is the modification of the penalty term.
The λkm denotes the penalty parameter. If λkm = 0, the estimated coefficients equal the
OLS solutions. If λkm > 0, the parameters are shrunk toward zero. To allow for a specific
time series and cross section penalty, λkm consists of three parts:

λkm = λk pα c. (7)

1. Basic penalty - λk. This part varies across equations. λk > 0 will force coefficients
toward zero.

2. Time series penalty - pα. It captures that more recent lags provide more informa-
tion than more distant ones. The penalty increases with the lag order, p, for α > 0.

10Regarding the degrees of freedom for the lasso see Bühlmann and van de Geer (2011) for details.
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The time series penalty part allows the penalty to vary across lagged variables.
3. Cross section penalty - c > 1, if foreign variable. The penalty models that lags of

domestic variables have a larger impact than lags of foreign variables.

The penalty parameters vary across equations (due to λk) and across lagged variables (due
to pα and c). The parameters α and c are fixed for the whole model.

Optimal penalty parameters are determined via a rolling cross-validation technique.
The penalty parameters are chosen such that they minimize one-step ahead mean squared
forecast errors.11

1 T1 T2 T

initialization

penalty parameter selection

forecast evaluation

Like Song and Bickel (2011), the sample is split in three periods: The first period from 1
to T1 − 1 is used for estimating the model, based on the second period from T1 to T2 − 1
different penalty parameters are evaluated, and the third period from T2 to the end of the
sample is later used for forecast evaluation of the lasso.12 The model is estimated in a
rolling scheme taking the observations from t to T1 + t − 1 for t = 1, ...,T2 − T1. For each
t the out-of-sample forecast accuracy for a specific penalty parameter λkm is measured by
the one-step ahead mean squared forecast error for variable k, k = 1, ...,NG:

MS FE(λkm)k =
1

T2 − T1

T2−T1∑
t=1

(Ŷk,t+1 − Yk,t+1)2

where Ŷk,t+1 denotes the estimated one-step ahead forecast for variable k. For simplicity
only λk is determined via cross-validation, while α and c are pre-set to α = 0.6 and c = 1.4
for the simulation and α = 0.6 and c = 1.8 for the application. These values are prese-
lected in a small cross-validation exercise. The search for the optimal λk is done over
a grid of penalty parameter values whereby at the maximal value all coefficients equal
zero.13 The forecast performance is evaluated for the period T2 to T by MSFEs based on
rolling window forecasts with the fixed penalty parameters determined for the period 1 to
T2 − 1.

The application of the lasso for PVAR is not limited to the currently considered pa-
nel VAR model in which the cross sections are countries. Other possible cross-sectional

11The n-fold cross-validation technique for choosing the optimal penalty parameter is not applied here
due to the time dependence in the PVAR model. By choosing the optimal penalty parameter that minimizes
one-step ahead mean squared forecast errors, this paper follows Song and Bickel (2011), Nicholson et al.
(2016), and Nicholson et al. (2017). However, in contrast, Bergmeir et al. (2015) justify the use of the
standard n-fold cross-validation techniques for autoregressive processes.

12For estimation, for the simulation the periods are T2 = T − 20 and T1 = T2 − 20 and for the application
T2 = T − 20 and T1 = T2 − 60. Extending the period for penalty parameter selection comes at the cost of
longer computational time.

13For the simulations: λmax
k = max(max(X ∗ Y ′)) and λgrid

k are six values between 0.01 and (1/NGp)λmax
k .

For the applications: λmax
k = max(max(X ∗Y ′)) and λgrid

k are twelve values between 0.01 and (1/T )λmax
k . See

Appendix F.1 for details on the grid values for the application.
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dimensions are, for example, industries and regions. More generally, the cross section
penalty can be understood as a higher penalty for variables of a cross section unit diffe-
rent than the one of the variable being explained.

2.4. Asymptotic Properties
As a variable selection method, the lasso for PVARs should satisfy the oracle proper-

ties.14 This means, firstly, asymptotically the lasso selects the correct sparsity pattern.
With probability tending to one, it sets true zero parameters to zero while setting non-zero
parameters unequal zero. Secondly, the non-zero parameters are as efficiently estimated
as if the true subset of relevant variables is known. Thus, for the oracle properties to hold,
selection consistency and asymptotic normality has to be satisfied as T goes to infinity.15

The asymptotic analysis follows the steps established in Song and Bickel (2011) and
Lee and Liu (2012). Assume that the data Yt are generated from an underlying model
as in equation (1) where Ut ∼ N(0,Σ). The PVAR model is stable. That is, all roots of
det(IK − A1z − A2z2 − ... − Apzp) are outside the unit circle.

Define the true parameter matrix as B∗. Assume that the covariance matrix is known.
The inverse of the covariance matrix is denoted as Ω. If Ω is estimated consistently, it can
be easily shown that the results derived in the following hold. The true coefficient in the
k-th row and m-th column of B∗ is defined as b∗km. The vectorized true coefficient matrix
is given by b∗ = vec(B∗). Let J = {(k,m) : b∗km , 0} denote the set of non-zero parame-
ters. The number of non-zero parameters, the cardinality of J, is given by |J| = s. The
lasso estimator of b∗, as derived from the optimization problem in equation (3) under the
[1 × NG2 p]-vector of penalty parameters, λ, is denoted as b̂. The b∗J is the vector of true
non-zero parameters with dimension [s× 1] and b̂J is the estimator of b∗J. Let Z = IK ⊗ X′

where X is the [K p × T ]-matrix of right hand side lagged variables.
Define aT = λkm for k,m ∈ J and cT = λkm for k,m < J. Assume that the lag

length p can increase with growing T . Thus, λkm is time dependent since it depends on
p. The aT is defined as the penalty term λkm for a true non-zero parameter. The cT gives
the penalty term for true zero parameters. The specified penalty terms in lassoPVAR al-
low for different penalization of each variable. The introduction of time series and cross
section penalty terms leads to stronger penalization of close to zero coefficients. Thus,
the distinction of the penalty term in aT and cT is justifiable. Furthermore, the following
assumptions are made:

(A1) Γ B plim ZZ
′

/T exists and is nonsingular.
(A2) Non-zero parameters exist. The cardinality of J is unequal zero, |J| = s > 0.
(A3) Assume that aT

√
T → 0.

(A4) Assume that cT
√

T → ∞.

Thus, assumptions (A3) and (A4) require different rate of convergences properties for the
penalty parameters associated with true zero and true non-zero coefficients.

14For the definition of the oracle property, see, for example, Lee and Liu (2012) and Kock and Callot
(2015).

15An increasing number of cross sections N increases the number of free parameters by adding equations
and variables in each existing equation and not the number of observations.
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Theorem 1 Under the assumptions (A1) to (A4) the following results hold:16

(R1) Selection consistency: plim b̂km = 0 if b∗km = 0.

(R2) Asymptotic normality:
√

T (b̂J − b∗J)
d
−→ N(0, (Ω ⊗ Γ)−1

J ).

The (Ω ⊗ Γ)J is the covariance matrix obtained by removing the row and column of Ω ⊗

Γ corresponding to the elements (k,m) < J. Results (R1) and (R2) imply that if the
penalty parameters satisfy the conditions given in (A3) and (A4), then lassoPVAR satisfies
asymptotically the oracle properties. Theorem (R1) states the selection consistency. That
is, for T → ∞, a true zero parameter, b∗km < J, is estimated consistently, meaning that,
equaling zero. The second result, (R2), establishes the asymptotic normality for true non-
zero parameters, b∗km ∈ J.

2.5. Comparison to Other Estimation Procedures for PVARs
This section describes three further lasso specifications, as well as the alternative ex-

isting estimation procedures for PVAR models, in the literature to which the performance
of the lasso for PVAR is compared. These are restricted least squares, the selection prior
of Koop and Korobilis (2015b), and the cross-sectional shrinkage approach of Canova and
Ciccarelli (2009).17 As a general benchmark model, the PVAR is estimated with ordinary
least squared - this model is referred to as OLS. However, while it can serve as a bench-
mark for small models, OLS is unfeasible for larger models for which T < K p.

Lasso with basic penalty. The first alternative lasso approach is a lasso with weig-
hted sum of squared residuals as the loss function but without a penalty which explicitly
captures panel properties. The time series penalty, α, is set to zero and the cross section
penalty, c, equals one. Thus, the penalty parameter λkm reduces to λk. In the following,
this estimator will be referred to as lassoVAR.

Post lasso. Secondly, a post lasso is considered. The post lasso consists of two esti-
mation steps, as explained by Belloni and Chernozhukov (2013). In the first step, a lasso
optimization problem is solved based on the proposed specification with weighted sum of
squared residuals along with time series and cross section penalties. In the second step,
the non-zero elements of the first step are re-estimated with OLS. Thus, the post lasso
reduces the bias of the non-zero elements introduced via lasso shrinkage. This estimator
is called post lassoPVAR.

Adaptive lasso. The third lasso alternative is the adaptive lasso, as proposed by Ren
and Zhang (2010) for VAR models following the idea of Zou (2006). While the lasso
shrinks all coefficients constantly depending on the penalty parameter, the adaptive lasso
penalizes high non-zero coefficient less than very small coefficients. This is achieved by
adaptive weights. Zou (2006) proposes weights, which are data-dependent, for the penalty
parameter, ŵkm = 1

|bOLS
km |

γ , where bOLS
km is the OLS estimate and γ a constant. OLS estimates

close to zero will increase the penalty parameter, leading to increased shrinkage, while
high non-zero coefficients will decrease the penalty parameter. The adaptive lasso applied
here, referred to as adaptive lassoVAR, uses the weighted sum of squared residuals and

16The proof of the theorem is provided in Appendix D.
17The two Bayesian approaches are only briefly described in this paper. See Koop and Korobilis (2015b),

Canova and Ciccarelli (2004), Canova and Ciccarelli (2009), and Canova and Ciccarelli (2013) for details.
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sets α = 0 and c = 1. One issue of the adaptive lasso is the choice of the unbiased estima-
tor for the weights. For very large models, OLS is not feasible if T < K p. An alternative
is to use ridge estimates or post lasso estimates as weights.18

The lassoPVAR allows for different penalty parameters for different coefficients. The
specification of the time series and cross section penalties captures close to zero coeffi-
cients and penalizes those stronger. Consequently, lassoPVAR can be seen as an adaptive
lasso.

Restricted least squares. The first estimation approach for PVARs used in the lite-
rature, which is discussed here, is a restricted least squares estimation, called restLS. He-
reby, the restricted LS estimates a block-diagonal system ordering the variables in country
blocks. Such a model assumes no dynamic interdependencies between countries. Setting
the off-diagonal elements to zero reduces the number of free parameters. However, the
assumption of no dynamic interdependencies between various economies is theoretically
hard to justify. No restrictions are set on the covariance matrix.

Single-country VAR. This model is closely related to the least squares approach but
assumes both a block-diagonal coefficient matrix and a block-diagonal covariance matrix.
Hence, the model allows for no interdependencies across countries. Estimating the whole
system is equal to an estimation of each single country VAR separately. The model is
estimated with OLS. The estimator is called single VAR.

Stochastic search specification selection. The second approach is the Bayesian se-
lection prior of Koop and Korobilis (2015b) called stochastic search specification se-
lection (SSSS). The authors define weighted normal distributions as prior distributions
that center around a restriction with a small or a large variance. Thus, the first part of the
distribution shrinks the estimated parameter toward the restriction (small variance) while
the second part allows for a more freely estimated parameter (large variance). Depending
on a hyperparameter, which is Bernoulli distributed, a parameter is drawn from the first
or second part of the distribution. Koop and Korobilis (2015b) specify three different pri-
ors based on the possible restrictions: They search for no dynamic interdependencies, no
static interdependencies and for homogeneity across coefficient matrices.

The prior centering around the no dynamic interdependency restriction is specified for
an off-block-diagonal matrix of B of variables belonging to one country. The dynamic
interdependency prior has the following form:

Bi j ∼ (1 − γDI
i j )N(0, τ2

1I) + γDI
i j N(0, τ2

2I)

γDI
i j ∼ Bernoulli(πDI), ∀ j , i

where Bi j is a off-block-diagonal matrix of B and τ2
1 < τ2

2. If γDI
i j = 0, Bi j is shrunk to

zero, if γDI
i j = 1, Bi j is more freely estimated. Setting the prior on a block of variables

of one country leads to a similar treatment of all variables of one country being either
restricted (shrunk to zero) or not. The cross-sectional homogeneity prior is set on the

18Compare with, for example, Kock and Callot (2015). However, using the post lasso will increase
computational time while using ridge estimation requires further determination of hyperparameters.
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diagonal coefficient matrices of the B matrix. The prior has the following form:

Bii ∼ (1 − γCS H
i j )N(B j j, η

2
1I) + γCS H

i j N(B j j, η
2
2I)

γCS H
i j ∼ Bernoulli(πCS H), ∀ j , i

where Bii and B j j are block-diagonal matrices of B and η2
1 < η

2
2. If γCS H

i j = 0, Bii is shrunk
to B j j. Koop and Korobilis (2015b) specify a hierarchical normal mixture prior for the off-
diagonal elements of the covariance matrix to build in no static interdependencies. Since
no restrictions are set on the covariance matrix for the lasso solution and the forecast com-
parison is done on the reduced form, no restriction search for static interdependencies is
done in the following exercises. The covariance is drawn from an inverse Wishart distri-
bution. A Markov Chain Monte Carlo algorithm samples the estimated parameters as the
posterior means.

Cross-sectional shrinkage approach. The third estimation procedure is the cross-
sectional shrinkage approach proposed by Canova and Ciccarelli (2009). Here, the para-
meters are factorized into common, country specific, and variable specific time-varying
factors. Canova and Ciccarelli (2009) specify the model in a hierarchical structure:

b = ΛF + et

Yt = ZtΛF + εt

εt = Ut + Ztet

et ∼ N(0,Σ ⊗ σ2I)

εt ∼ N(0, (I + σ2Z
′

t Zt)Σ)

where Λ is a [NG2 p × f ] matrix of loadings, F is an [ f × 1] vector of factors, and Zt =

I ⊗ Xt−1. Since the factors, F, are of a lower dimension than the vectorized B matrix,
b, f � NG2 p holds. The specified prior distributions for the covariance matrices are
inverse Wishart and b ∼ N(ΛF,Σ ⊗ σ2I). The number of factors are N common factors
for coefficients of each country, G common factors for coefficients of each variable, and
one common factor for all coefficients.

An advantage of the approach is that it takes into account time variation. As one
limitation, the cross-sectional shrinkage approach groups coefficients due to factorizing,
however, it does not consider zero values in a specific way.19 The procedure does not use
possible sparsity for dimension reduction.

3. Simulation Studies

3.1. Simulation Set-Ups
The finite sample performance of the lassoPAVR is evaluated based on three Monte

Carlo simulations. In the first simulation set-up data is generated from a stationary
PVAR(1) model that includes two countries and two variables per country. The num-
ber of time series observations is 100. The underlying PVAR model has the parameter

19Korobilis (2016) elaborate further on this point.
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matrix

Atrue
1 =


0.9 0.8 0 0
0 0.9 0 0

0.6 0.6 0.9 0
0.6 0.6 0.8 0.9


and normally distributed error terms, Ut ∼ N(0,Σtrue) with Σtrue : σii = 0.2 and σi j = 0.1
for i , j. The PVAR model represents a scenario where the second country has no im-
pact on variables of the first country while the first country’s variables affect the variables
of country 2. This set-up could be a model including one big and one small economy,
justifying the block of zeros in the upper part of the A1-matrix. A second property of the
model is that domestic variables have a greater impact than foreign variables have.

The number of parameters of this model is moderate. The coefficient matrix has 16
free coefficients out of which 10 are true non-zero coefficients. As a result, the methods
aiming for dimension reduction, such as the lasso approaches and the two Bayesian proce-
dures, are not able to provide substantial benefit by reducing the number of parameters to
estimate. Rather, the simulation is conducted to analyze whether these methods perform
comparable to standard OLS in terms of mean squared error and forecast accuracy.

In the second simulation data is generated from a stationary PVAR(4) with Ut ∼

N(0,Σtrue), Σtrue : σii = 0.2, σi j = 0.1 for i , j, and T = 100. The model includes
three countries and two variables per country. The set-up illustrates a larger and sparse
model with parameter matrices

Atrue
1 =



0.6 0.5 0 0 0 0
0 0.6 0 0 0 0

0.4 0.4 0.6 0.5 0 0.4
0 0.4 0 0.6 0 0

0.4 0.4 0.4 0 0.6 0
0 0.4 0 0.4 0 0.6


,

Atrue
2 = 0, Atrue

3 = 0,

Atrue
4 =



0.35 0.3 0 0 0 0
0 0.35 0 0 0 0

0.3 0.3 0.35 0.3 0 0.3
0 0.3 0 0.35 0 0

0.3 0.3 0.3 0 0.35 0
0 0.3 0 0.3 0 0.35


.

The model includes dynamic and static interdependencies as well as cross-sectional he-
terogeneities. It incorporates a time series pattern by lower coefficients for higher lags.
Thus, the impact of a variable is smaller for lag four than for lag one. The second and
third lag have no impact. This structure could be motivated by a model using quarterly
data depicting seasonal patterns. In addition, foreign variables affect domestic variables
less compared to the effect of domestic variables.

The second simulation provides a larger and sparser model than the model in simu-
lation one. The coefficient matrices have 144 free parameters, out of which 34 are true
non-zero coefficients, hence 23.61% of all coefficients of B are true non-zero coefficients.
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Table 1: Summary of simulation set-ups

Simulation (1) (2) (3)

lag length 1 4 4
number of countries N = 2 N = 3 N = 4
number of variables G = 2 G = 2 G = 4
number of non-zeros in B 10 34 432
number of elements in B 16 144 1024
fraction of non-zeros in B 62.50% 23.61% 42.19%

However, this model is still rather of medium size. The simulation enables analyzing
whether efficiency gains compared to the benchmark OLS can already be found in me-
dium sized models.

The DGP of the third simulation is based on a PVAR(4) with four countries and four
variables per country. The Ut are normally distributed with Ut ∼ N(0,Σtrue), Σtrue :
σii = 0.2, σi j = 0.1 for i , j, and the length of the time series is T = 100. The coefficient
matrices for lag p = 1, ..., 4 are lower triangular matrices where the diagonal elements are
given by

(−0.8)(p−1)0.8.

A column of the off-diagonal elements below the diagonal is given by

[0.5 − (p − 1) 0.5 − (p − 1) 0.5 − (p − 1) 0]′

repeated for each country. The coefficient matrices model that foreign lags are less impor-
tant and that with increasing lag length the impact of the variables decreases. This large
and sparse model allows for dynamic and static interdependencies as well as for hetero-
geneous coefficients across economies. In total, B has 1024 coefficients, of which 432 are
true non-zero coefficients, thus 42.19% are non-zero coefficients. The constant is set to
zero in all three simulations. Table 1 summarizes the simulation set-ups. The underlying
models of simulation one and two are chosen to be all relatively small so that they allow
the comparison to Bayesian PVAR methods and least squares estimators. For simulation
three some estimators are not feasible.

3.2. Performance Criteria
The performance of the lasso for PVAR models is evaluated along the following crite-

ria.20

1. Correct sparsity pattern: The measure calculates how often the evaluated proce-
dure takes the correct decision whether to include or exclude a variable. It measures
how often are true relevant variables included and true irrelevant discarded averaged
over all Monte Carlo replications.

2. Fraction of relevant variables included: It counts the number of true relevant va-
riables included in the models relative to the number of all true non-zero coefficients
averaged over all Monte Carlo replications.

20Tibshirani (1996), Ren and Zhang (2010) or Kock and Callot (2015), for example, use similar criteria
to assess the performance of the lasso.

15



Table 2: Overview of estimators

lassoPVAR lasso for PVAR with weighted sum of squared residuals,
time series and cross section penalties,
λkm = λk pαc

lassoVAR lasso for PVAR with weighted sum of squared residuals,
λkm = λk, α = 0 and c = 1

post lassoPVAR post lasso for PVAR: first step estimates lasso for PVAR
with weighted sum of squared residuals,
time series and cross section penalties,
λkm = λk pαc
second step re-estimates non-zero elements with OLS

adaptive lassoVAR adaptive lasso for PVAR with weighted sum of squared residuals,
weights depend on OLS estimate,
λkm = λk, α = 0 and c = 1

SSSS selection prior of Koop and Korobilis (2015b)

CC cross-sectional shrinkage approach of Canova and Ciccarelli (2009)

OLS ordinary least squares estimation of PVAR model

restLS restricted least squares, block diagonal system
assumption of no dynamic interdependencies

single VAR least squares, block diagonal system for coefficient matrix and covariance
assumption of no dynamic and static interdependencies

3. Number of variables included: Reports the average number of variables included
in the model. This measure evaluates the dimension reduction done by the estimator.

4. MSE: The mean squared error of the parameter estimates for one Monte Carlo
replication is calculated as

MS E =
1

K2 p

K∑
k=1

K p∑
m=1

(b̂km − btrue
km )2

where b̂km is the estimate of the true parameter btrue
km . The MSEs are averaged over

all Monte Carlo replications.
5. MSFE: The h-step ahead mean squared forecast error for one Monte Carlo replica-

tion is calculated as

MS FE =
1

T − h − T2 − 1

T−hmax∑
t=T2

 1
K

K∑
j=1

(Ŷ j,t+h − Y j,t+h)2


where Ŷ j,t+h = B̂X̂t+hmax−1 denotes the iteratively estimated h-step ahead forecast for
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Table 3: Performance evaluation of estimators

lasso techniques Bayesian methods least squares

lasso lasso post adaptive single
PVAR VAR lasso lasso SSSS CC restLS VAR OLS

Correct sparsity pattern in %
(1) 55.13 54.69 55.13 53.06 - - 37.50 37.50 37.50
(2) 40.83 54.54 40.83 51.43 - - 34.72 34.72 76.39
(3) 47.91 51.96 47.91 51.52 - - 39.06 39.06 57.81

Fraction of relevant variables included in %
(1) 31.90 34.40 31.90 38.50 - - 60.00 60.00 100.00
(2) 38.41 57.26 38.41 51.29 - - 47.06 47.06 100.00
(3) 44.18 62.85 44.18 59.98 - - 33.33 33.33 100.00

Number of variables included
(1) 5.20 5.63 5.20 6.19 16 16 8 8 16
(2) 50.91 83.48 50.91 74.94 144 144 48 48 144
(3) 440.38 643.12 440.38 613.76 - - 256 256 1024

Mean squared error relative to OLS
(1) 0.9649 0.9654 0.9735 0.9578 0.9753 0.9631 0.9707 0.9700 -
(2) 0.5806 0.6426 0.6890 0.6335 0.8723 0.5755 0.5987 0.6232 -
(3) 0.2487 0.2819 - 0.2827 - - - 0.2394 -

Note: (1): Simulation 1 - DGP of simulation 1 is generated from a two-country, two-variable model with
one lag, B has 16 coefficients, 10 true non-zero. (2): Simulation 2 - DGP of simulation 2 is generated
from a sparse three-country two-variable model with four lags, B has 144 coefficients, 34 are true non-
zero. (3): Simulation 3 - DGP of simulation 3 is generated from a four-country four-variable model with
four lags, B has 1024 coefficients, 432 are true non-zero. The correct sparsity pattern measures how often
true relevant variables are included and irrelevant ones excluded. The fraction of relevant variables included
counts the number of true relevant variables included in the models relative to the number of all true relevant
variables. The number of variables included measured the dimension reduction. MSEs are relative to OLS.
All measures are averaged over 100 Monte Carlo replications.

t with t = T2, ...,T − 1 and h = 1, ..., hmax, hmax = 12. The MSFEs are averaged over
t, over all variables and over all Monte Carlo replications.

Table 2 lists the estimators that are compared in the simulation studies. The OLS estimator
serves as a benchmark model. However, for larger models, where T < K p, OLS is not
feasible. The lag length of estimated PVAR models is set to the true lag length, which
means one in the first simulation and four in the second and third simulation.

3.3. Simulation Results
Table 3 and 4 contain the evaluation of the various estimation procedures along the

five performance criteria for simulation one, marked as (1), simulation two, (2), and si-
mulation three, (3). The first four columns present the results for the lasso techniques,
the next two columns for the Bayesian methods, and the last three for the least squares
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Table 4: Mean squared forecast errors relative to OLS

lasso techniques Bayesian methods least squares

lasso lasso post adaptive single
PVAR VAR lasso lasso SSSS CC restLS VAR

MSFE for h = 1
(1) 0.9541 0.9551 0.9606 0.9511 1.0170 0.9775 0.9531 0.9586
(2) 0.7318 0.7731 0.8183 0.7659 1.1948 0.7335 0.7390 0.7613
(3) 0.1362 0.1716 - 0.1724 - - - 0.1375

MSFE for h = 2
(1) 0.9953 0.9953 0.9958 0.9953 1.0000 1.0000 0.9948 0.9948
(2) 0.7707 0.8170 0.8476 0.8117 1.2549 0.7754 0.7825 0.8056
(3) 0.1468 0.1874 - 0.1869 - - - 0.1477

MSFE for h = 6
(1) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(2) 0.9262 0.9361 0.9410 0.9343 1.3866 0.9451 0.9316 0.9329
(3) 0.0827 0.0966 - 0.0967 - - - 0.0828

MSFE average over 12 horizons
(1) 0.9957 0.9958 0.9964 0.9955 1.0014 0.9982 0.9956 0.9961
(2) 0.9083 0.9248 0.9351 0.9227 1.7136 0.9193 0.9136 0.9216
(3) 0.0740 0.0901 - 0.0899 - - - 0.0741

Note: (1): Simulation 1 - DGP of simulation 1 is generated from a two-country two-variable model with
one lag, B has 16 coefficients, 10 true non-zero. (2): Simulation 2 - DGP of simulation 2 is generated from
a sparse three-country two-variable model with four lags, B has 144 coefficients, 34 are true non-zero. (3):
Simulation 3 - DGP of simulation 3 is generated from a four-country four-variable model with four lags, B
has 1024 coefficients, 432 are true non-zero. MSFEs are relative to OLS and average over all t, all countries
and variables and over 100 Monte Carlo replications.

estimators. The performance criteria are averages over 100 Monte Carlo replications.21

Overall, the simulation studies provide supporting evidence that the use of the lasso
for PVARs is beneficial in terms of lower mean squared errors and mean squared fore-
cast errors relative to OLS. The forecast performance is additionally improved relative to
the selection prior of Koop and Korobilis (2015b) and the factor approach of Canova and
Ciccarelli (2009). Accounting for the panel characteristics in the penalty terms leads to
better performance in terms of MSEs and MSFE relative to the lassoVAR which does not
include time series or cross section properties in the penalty terms.

The lassoPVAR includes true relevant and discards irrelevant variables in 55.13% of
all simulation draws of the first, in 40.83% of the second, and in 47.91% of the third si-
mulation. The fraction of relevant variables included by lassoPVAR is 31.90%, simulation
one, 38.41%, simulation two, and 44.18%, simulation three. The other lasso techniques
reveal similar numbers while restLS and single VAR find the correct sparsity pattern in
fewer cases but more often detect the fraction of relevant variables included. The number
of detection of the correct sparsity pattern as well as the fraction of relevant variables in-

21Further results for the simulations are given in Appendix E.1.
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cluded are low for all methods. The only exception, in some cases, is OLS. However, OLS
does not reduce the dimension and, hence, is not feasible for larger systems.

The lasso techniques clearly reduce the dimension of the models. The lassoPVAR
includes 32.50% of all variables in simulation one (number of variables included is on
average 5.2), 35.35% in simulation two (50.91 variables included), and 43.01% in si-
mulation three (440.38 variables included). That means that for (1) lassoPVAR includes
fewer variables than the true number of non-zero coefficients, for (2) it picks too many
variables, while for (3) it selects around the true number of non-zero coefficients. Hence,
lassoPVAR performs best in the largest simulation with true non-zero coefficients around
40%. For model (2), which is the sparsest model, the performance of lassoPVAR is wea-
ker. This might be due to the underlying model in simulation two, which sets the whole
lags two and three to zero. This structure might be better captured by a model setting a
whole block of coefficients to zero. These findings are also partly reflected in the numbers
for the correct sparsity pattern and the fraction of relevant variables included.

The lower dimension reduction of lassoVAR compared to lassoPVAR might be driven
by the specification of the penalty terms. The penalty terms of lassoPVAR introduce ad-
ditional penalties on higher lags and foreign variables, which results in more variables
excluded. restLS and single VAR reduce the number of variables by one-half in (1), one-
third in (2), and one-fourth in (3). SSSS and CC are shrinkage approaches. Therefore,
SSSS includes all variables. Since CC uses factors to reduce the number of parameters,
the first three performance criteria are not applicable.

Compared to the benchmark OLS, all estimators reveal lower mean squared errors in
all simulations. As expected, due to the moderate number of parameters in simulation
one, the gain - measured in lower MSEs - of using lasso or the Bayesian methods is lower
compared to the gain in the larger and sparser set-ups of simulations two and three. The
MSEs, relative to OLS for simulation one, are in a range between 0.95 and 0.97 for all
estimators. In simulation (2), lassoPVAR leads to a substantial reduction of 0.42 in the
MSEs relative to OLS and performs second best compared to all other estimators. Only
CC has a lower MSE at 0.5755. The adaptive lassoVAR and post lassoPVAR do not yield
improvements compared to lassoPVAR. The fact that the second stage OLS estimation of
post lassoPVAR relies on the possible misspecified model of the first step of the lasso es-
timation could explain the performance of the post lassoPVAR. For simulation three some
models are infeasible due to invertability issues. The lassoPVAR clearly outperforms OLS
with a MSE of 0.2487. Only single VAR has a slightly lower value, 0.2394. The weak
performance of OLS, particularly in terms of MSE for the larger models, reflects the pro-
blem of overfitting.

The usage of the selection methods leads to a sizable reduction in mean squared fo-
recast errors compared to OLS for all simulations, as shown in table 4. The presented
one-step ahead, two-steps ahead, and six-steps ahead MSFEs are averaged over all t, all
countries and variables and over the MC replications. The last three rows show the MSFEs
additionally averaged over 12 forecast horizons. Lowest MSFEs per row are marked in
bold.

Even in the simulation with a small model, where dimension reduction is not requi-
red, MSFEs are lower for all estimators compared to OLS, except for SSSS, and are in a
similar range compared among all estimators. For forecast horizon six, the estimators per-
form equally good. In the second simulation, the use of lassoPVAR improves the forecast
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Table 5: Overview of empirical applications

Model (1) Model (2) Model (3)

N=5, G=2, p=6 N=10, G=2, p=6 N=6, G=4, p=6

countries DE, FR, IT, UK,
US

DE, DK, ES, FR,
GR, IE, IT, PT, UK,
US

DE, ES, FR, IT,
UK, US

variables CPI, IP CPI, IP CPI, IP, REER, UN

# of observations 131 131 131

# of parameters per
equation

60 120 144

accuracy for all horizons and produces the lowest MSFEs relative to all other methods.
Hence, the results provide evidence that accounting for the inherent panel structure within
the data by time series and cross section penalties pays off in terms of improved forecast
accuracy. Averaged over 12 horizons, the MSFE is 0.9083, a gain of around 0.09 in fore-
cast performance relative to OLS. The largest improvement is found for horizon one with a
gain of around 0.27. The lassoPVAR also produces the lowest MSFEs in simulation three
and substantially improves the forecast accuracy relative to OLS, with a MSFE averaged
over 12 horizons of 0.0740.

For the covariance estimation of lassoPVAR the optimal selected ρ is equal to zero.
Estimating the covariance with the two-step least squares procedure leads to similar per-
formance results which can be found in Appendix E.2.

4. Forecasting with Multi-Country Models

4.1. Forecasting Including a Global Dimension
This section assesses the forecasting performance of the PVAR estimated with lass-

oPVAR for an empirical application. Of great interest for applied researches and policy
makers are forecasts of macroeconomic variables. The forecasting exercise can shed light
on whether forecasts of key macroeconomic variables of interlinked countries have to ac-
count for possible spillovers across countries. Since panel VARs can exploit international
interdependencies and commonalities, they are well suited as forecasting models inclu-
ding a global dimension.

Several studies stress the benefits of accounting for international dependences while
forecasting national and international key macroeconomic variables. Ciccarelli and Mo-
jon (2010) and Bjørnland et al. (2017) use a factor model for inflation and GDP forecasts.
The authors report improved forecast performance when accounting for national and glo-
bal factors. Koop and Korobilis (2015a) indicate that using a panel VAR, estimated by
a factor approach, for forecasting key macroeconomic indicators of euro zone countries
can lead to improvements in forecasts. Dees et al. (2007) forecast inflation of four euro
area countries applying sectoral data. Their results provide evidence that forecasts with
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sectoral PVARs outperform random walk or autoregressive models in the short run.22

4.2. Forecasting Applications
In this paper, forecast performance is evaluated for three different models, described

in table 5. The benchmark model, model (1), includes monthly changes in the harmonized
index of consumer prices (CPI) and industrial production growth (IP) for five countries:
Germany (DE), France (FR), Italy (IT), the United Kingdom (UK), and the United States
(US). The second model extends the country set to ten countries by adding Denmark
(DK), Greece (GR), Ireland (IE), Portugal (PT), and Spain (ES). Finally, the third model
additionally uses the changes in unemployment rates (UN) and the real effective exchange
rate (REER) for six countries: DE, ES, FR, IT, UK, and US.

The number of parameters per equation is larger than the number of observations for
model (3) and very close to it for model (2). Hence, for these two models, OLS and
estimators dependent on OLS, like adaptive lasso, SSSS, and CC, are not feasible. The
data provided by the OECD cover the period from 2001:1 to 2016:6. All models include
six lags.23

An out-of-sample forecasts exercise is conducted. The forecasts are made for the
period from 2011:7 to 2016:6. The estimation is based on the data up to 2011:6 rolling
forward so that the same amount of time series observations is used for every forecast. The
up to twelve-horizons forecasts are iterated forecasts and are calculated by Ŷt+h = B̂X̂t+h−1

for h = 1, ..., 12. The estimated coefficient matrix, B̂, is computed based on the various
compared estimators using the observations t : T2 + t−1 in t, where T2 denotes the starting
point of the forecasting period, 2011:7. The choice of performing iterated rather than
direct forecasts is motivated by the results of Marcellino et al. (2006), according to which
iterated forecasts are preferred to direct ones despite theoretical findings demonstrating
stronger robustness to model misspecification of the latter. The forecasts are evaluated by
mean squared forecast errors. The forecasting performance of lassoPVAR is compared to
the previously explained variants.

4.3. Results of the Forecasting Exercises
Table 6 presents the averaged mean squared forecast errors relative to OLS for one-

step, two-steps, six-steps, and twelve-steps ahead forecasts for model (1). Additionally,
the last row indicates forecast performance averaged over twelve forecast horizons.24

Firstly, the use of lassoPVAR improves forecast performance relative to OLS. The

22Other papers use global VAR (GVAR) models to account for international linkages in forecasts. Pe-
saran et al. (2009) show that multi-country models obtain more accurate forecasts since GVAR forecasts
outperform forecasts based on univariate models. Greenwood-Nimmo et al. (2012), Dovern et al. (2016),
Huber et al. (2016), and Garratt et al. (2016) provide further evidence that GVAR models improve forecast
performance relative to univariate benchmark models. The first study shows the benefits for higher horizon
forecasts and the second for predictive joint densities. The third compares GVAR forecasts under various
prior specifications while the latter assesses point and density forecasts for GDP growth as well as for the
probability of recessions.

23The data are seasonally adjusted. CPI is calculated as the log-differences of consumer price indices.
UN is the difference of the unemployment rate from one period to the last period. The time series are
stationary, de-meaned and standardized.

24Further results on country and variable basis are in Appendix F.2.
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Table 6: Mean squared forecast error relative to OLS for model (1)

lasso techniques Bayesian methods least squares

lasso lasso post adaptive single
PVAR VAR lasso lasso SSSS CC restLS VAR

MSFE for h = 1
0.5708 0.5839 0.6166 0.5825 1.7722 0.6002 0.6114 0.6763

MSFE for h = 2
0.5988 0.5978 0.6524 0.5976 1.7055 0.5749 0.6050 0.6453

MSFE for h = 6
0.6985 0.7123 0.7372 0.7143 2.6418 0.6624 0.7153 0.7532

MSFE for h = 12
0.7873 0.7951 0.8056 0.7953 4.5683 0.7615 0.7775 0.7790

MSFE average over 12 horizons
0.6783 0.6869 0.7136 0.6870 2.8079 0.6528 0.6884 0.7155

Note: The forecast period is from 2011:7 to 2016:6. MSFEs are averaged over all t and are relative to OLS,
MSFEs smaller than one indicate better performance relative to OLS. Average are the MSFEs additionally
averaged over all horizons.

mean squared forecast error averaged over all countries, variables, t and horizons of las-
soPVAR has the second lowest value with average MSFE of 0.6783. That means that on
average using lassoPVAR for forecasting leads to a gain of 0.3217 in forecast accuracy
compared to OLS. lassoPVAR produces stable forecasts over all twelve forecast horizons
with MSFE relative to OLS in a range of 0.79 and 0.57. The benefit of using lassoPVAR
relative to OLS is greatest for one-step ahead forecasts with a gain in forecast perfor-
mance of 0.4292. None of the other estimators is statistically significantly better in terms
of MSFEs than the lassoPVAR.25

Secondly, accounting for the time series and cross-sectional characteristics in the pen-
alty terms leads to gains in the forecast accuracy. On average, lassoPVAR outperforms
lassoVAR and all but one of the forecasts horizons. Thirdly, the results provide evidence
that the use of multi-country models compared to single-county models is beneficial to
improve forecast performance. MSFEs of lassoPVAR and CC, both models accounting
for interdependencies across countries, are lower than for the single VAR model. The re-
sults of the larger applications, model (2) and model (3), strengthen this finding. Since
OLS is not feasible, Table 7 compares MSFE of lassoPVAR and single VAR relative to the
mean forecast. On average and for most of the horizons lassoPVAR outperforms the mean
forecasts and the forecasts based on the single country model.

CC shows good performance for small systems, but is infeasible for systems in which
the number of parameters per equation exceeds the number of time series observations.
That this is a relevant issue for applications, is shown in model (2) and (3) which are of
reasonable or even still small size for models addressing potential macroeconomic ques-

25Results for the Diebold-Mariano Test assessing the statistical significance of the difference in MSFEs
of the models are in Appendix F.2.
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Table 7: Mean squared forecast error relative to mean forecast for model (2) and model (3)

N=10, G=2, p=6 N=6, G=4, p=6

lassoPVAR single VAR lassoPVAR single VAR

MSFE for h = 1
0.9068 0.9807 0.9948 1.0402

MSFE for h = 2
0.9540 1.0011 1.0476 1.0536

MSFE for h = 6
0.9588 0.9764 0.9333 1.0104

MSFE for h = 12
0.9519 0.9253 0.9234 0.9321

MSFE average over 12 horizons
0.9526 0.9608 0.9495 0.9925

Note: The forecast period is from 2011:7 to 2016:6. MSFEs are averaged over all t and are relative to the
mean forecast, MSFEs smaller than one indicate better performance relative to the mean forecast. Average
are the MSFEs additionally averaged over all horizons.

tions in the context of international spillovers. A second issue with the factor approach is
the mentioned difficulty for structural identification.

The sparsity pattern of the coefficient matrix for model (1) is given in figure 1.26 The
largest dynamic interdependencies across countries are found for the first and second lags.
Own lags have the largest impact, as shown by the darker colors for diagonal elements.
In addition, US variables affect variables of other countries, in particular for lags one and
two. For benchmark model (1), 600 parameters of the coefficient matrix are estimated.
The lassoPVAR reduces the dimension by setting 458 coefficients to zero. Thus, 23.67%
of the estimated coefficients are non-zero elements. 27

5. Conclusions

This paper develops a lasso technique for panel VARs, named lassoPVAR. It speci-
fies a penalized estimation problem using the weighted sum of squared residuals as the
loss function and a penalty incorporating both time series and cross section properties.
Thereby, it allows for an unrestricted covariance matrix, meaning that the estimation ac-
counts for possible correlation between variables. The penalty term uses the inherent
panel structure within the data. It specifies that more recent or domestic lags provide
more information than more distant or foreign lags. As a result, a higher penalty is set for
higher lags and foreign variables.

The main results of the paper are as follows. The lassoPVAR has the asymptotic ora-
cle property meaning that selection consistency and asymptotic normality are established.

26The sparsity pattern for lag 4 and 5 as well as for the covariance matrix are given in Appendix F.2.
27The optimal penalty parameter ρ in the estimation of the covariance is selected to equal zero.
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Figure 1: Sparsity pattern of the coefficient matrix for model (1)

(a) Lag 1 (b) Lag 2

(c) Lag 3 (d) Lag 6

Note: Sparsity pattern of the coefficient matrix B. Negative values are multiplied by -1.

Furthermore, the lasso for PVAR achieves lower mean squared forecast errors, thus incre-
asing forecasting performance compared to estimating the PVAR with OLS. Compared to
other Bayesian panel VAR methods and single county models, the lassoPVAR improves
forecasts, especially for larger models, while mean squared forecast errors are in a similar
range for smaller models. These findings are supported by the simulation results and a
forecasting exercise that includes up to ten advanced economies and up to four macroe-
conomic variables. Moreover, accounting for time series and cross section properties in
the penalty term is beneficial for the forecast performance as lassoPVAR outperforms a
lasso estimator without specific penalties. Additionally, the dimension reduction of the
lasso techniques leads to reduced mean squared errors compared to OLS in the conducted
simulations.

The method proposed in this paper may be of interest for applied researchers, since the
lasso for PVAR is able to deal with the curse of dimensionality problem in a multi-country
model. lassoPVAR ensures the estimation feasibility by using the panel structure in the
data and allows at the same time to include interdependencies and heterogeneities across
countries in the model. The results presented show that the proposed lasso technique is a
useful tool for estimating large panel VAR models.

However, the researcher must be aware that the performance of the lasso is sensitive
to the suitability of the analyzed model for the penalized estimation technique. The lasso
generally performs well in systems with a large number of parameters and existing spar-
sity. When few coefficients are large and the others close to zero, the lasso has usually
low mean squared errors, while a good performance is not ensured for models deviating
from these properties. This point is stressed by Hansen (2016) and is visible in the diffe-
rences in results for the simulations with DGPs generated from a small and from a larger
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and sparse model. However, the benefit of the lasso for PVARs is already visible through
reduced mean squared errors and improved forecast accuracy in a simulation of moderate
size with 165 parameters.

In future research, it may be interesting to further assess different specifications of the
penalty term in the context of panel VAR models. One possibility to capture the panel
structure is the use of the group lasso, as proposed by Yuan and Lin (2006). The group
lasso treats variables in groups, setting whole blocks to zero. This structure might be
especially useful for analyses including smaller countries and globally more influential
countries. Furthermore, variables in multi-country models might be highly correlated.
This issue can be addressed with the elastic-net invented by Zou and Hastie (2005). This
procedure is able to select groups of correlated variables while the lasso selects one vari-
able out of a set of correlated variables.
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Appendix A. The lasso Estimator

The optimization problem of the lasso for PVAR is minimized after bkm. The bkm is the
element of the B-matrix in the k-th row and m-th column. K is the number of countries
times the number of variables, K = NG. The Y j and Xm are of dimension [1 × T ] for
j = 1, ...,K and m = 1, ...,K p. The ωk j denotes an element of the inverse of the covariance
matrix, Σ−1 = Ω. The λkm is the penalty parameter and |bkm| denotes the absolute value of
bkm. The optimization problem is rewritten as

argmin
bkm

1
T

ωkk

Yk − bkmXk −

K p∑
i,m

bkiXi


Yk − bkmXk −

K p∑
i,m

bkiXi


′

+

K∑
j,k

ωk j

Yk − bkmXk −

K p∑
i,m

bkiXi


Y j − b jmXk −

K p∑
i,m

b jiXi


′

+

K∑
j,k

ω jk

Y j − b jmXk −

K p∑
i,m

b jiXi


Yk − bkmXk −

K p∑
i,m

bkiXi


′

+

K∑
j,k

K∑
l,k

ω jl

Y j − b jmXk −

K p∑
i,m

b jiXi


Yl − blmXk −

K p∑
i,m

bliXi


′

+ λkm |bkm| +

K∑
j,k

K p∑
i,m

λkm |bkm| .

This simplifies to

1
T

ωkk

−2bkmXmY ′k + bkmXmX′mbkm + 2bkmXm

K p∑
i,m

X′i bki + R1


+2

K∑
j,k

ω jk

−bkmXmY ′j + bkmXm

K p∑
i=m

X′i b ji + R2

 + R3


+ λkm |bkm| +

K∑
j,k

K p∑
i,m

λkm |bkm| ,

where R1,R2 and R3 collect the terms without bkm. Taking the derivative after bkm:

1
T

ωkk

−2XmY ′k + 2XmX′mbkm + 2Xm

K p∑
i,m

X′i bki


+2

K∑
j,k

ω jk

−XmY ′j + Xm

K p∑
i=m

X′i b ji


 + sign(bkm)λkm

= 0.
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Thus, blasso
km is equal to

blasso
km = sign

∑K
j,k ω jk(Y j −

∑K p
i=1 b jiXi)X′m

ωkkXmX′m
+

(Yk −
∑K p

i,m bkiXi)X′m
XmX′m


∣∣∣∣∣∣∣
∑K

j,k ω jk(Y j −
∑K p

i=1 b jiXi)X′m
ωkkXmX′m

+
(Yk −

∑K p
i,m bkiXi)X′m

XmX′m

∣∣∣∣∣∣∣
−

λkmT
2ωkkXmX′m

)
Appendix B. Estimation of the Covariance Matrix

Following Friedman et al. (2008) the subgradient of

log det(Ω) − tr(S Ω) − ρ ||Ω| |

with respect to Ω is given by
W − S − ρΓ = 0

with W = Σ̂. The elements of Γ give the sign of each element of Ω by being either 1 or -1.
For solving the glasso problem the partition[

W11 w12

w′12 w22

] [
Ω11 ω12

ω′12 ω22

]
=

[
I 0
0′ 1

]
is used. Here, W11 is the (NG − 1) × (NG − 1) block of W except the jth row and column,
w12 are the non-diagonal elements of the jth column and row of W and w22 is the jth

diagonal element of W. The notation is the same for Ω. The partition of the matrix is
done rotatively so that each jth row and column is once ordered last. Now, to solve for w12

the subgradient is expressed as

w12 − s12 − ργ12 = 0
W11z − s12 + ρv = 0

where γ12 is the sign of ω12, z = −ω11
ω22

= W−1
11 w12, γ12 = sign(ω12) = sign(−ω22W−1

11 w12).
Since ω22 > 0, sign(ω12) = −sign(z). The solution of the subgradient ẑ gives than the
value for w12 and ω12 = −ẑω22. Since the diagonal elements of the covariance matrix are
positive, wii = sii + ρ ∀ i.

The glasso has the following three steps:

1. Set initial value W = S + ρI. For diagonal elements wii = sii + ρ ∀ i do not update.
2. For each j = 1, ...,NG update until convergence:

(a) Partition W and S .
(b) Solve W11z − s12 + ρv = 0.
(c) w12 = W11ẑ.

3. Compute ω12 = −ẑω22.

The optimal ρ is chosen over a grid of values by minimizing BICρ = log(Σ̂ρ) +
log(T1)

T1
d f (ρ)

as done similarly in Kock and Callot (2015). The degrees of freedom, d f (ρ), are the
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number of non-zero elements in Σ̂. Since the penalty parameter ρ does not vary along the
elements of the covariance matrix, the BIC criterion can be used which is faster than the
cross-validation technique. The selection of the penalty parameter is done for the period
up to T1.

Appendix C. Optimization Algorithm

The optimization problem is solved by a coordinate descent algorithm as proposed in
Friedman et al. (2007) and Friedman et al. (2010). As a starting value B is set equal to
a zero matrix. The covariance is estimated in the glasso step. The optimal penalty para-
meters are determined via a cross-validation technique minimizing MSFEs. The search
of the optimal penalty parameters is done over a grid of values. The grid has a length of
six for the simulations and twelve for the applications. This rather short length is due to
the fact that using a finer grid increases computational time. The algorithm updates every
element bkm for k = 1, ...,K and m = 1, ...,K p. The following steps are repeated until
convergence is archived. Update bkm by:

1. Calculate

b̃km =
(Yk −

∑K p
i,m bkiXi)X′m

XmX′m
+

∑K
j,k ω jk(Y j −

∑K p
i=1 b jiXi)X′m

ωkkXmX′m

2. Set

λkm =

λk pαc for foreign variables
λk pα for domestic variables

where λk > 0, α > 0, c > 1, and p is the lag length.
3. Calculate λ̃km = λkmT

2ωkkXmX′m

4. Calculate blasso
km by

blasso
km =


b̃km − λ̃km for b̃km > 0, λ̃km < |b̃km|

b̃km + λ̃km for b̃km < 0, λ̃km < |b̃km|

0 for λ̃km ≥ |b̃km|

.

5. Set the B-matrix equal to values obtained in the last iteration Bn = Bn−1.

Convergence is achieved when max(|Bn − Bn−1|) < ε where ε is a small number. The ε
is chosen such that the lassoPVAR converges to the OLS solution for a penalty parameter
set to zero and weighted sum of squared residuals as the loss function. For the smaller
simulation a conservative value of 0.0000001 is chosen, while for the large simulation
(model (3)) ε = 0.0001.

Appendix D. Proof of Selection Consistency and Asymptotic Normality

(R1) Selection consistency: plim b̂km = 0 if b∗km = 0.

(R2) Asymptotic normality:
√

T (b̂J − b∗J)
d
−→ N(0,D−1).
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The vectorized true coefficient matrix is given by b∗ = vec(B∗). Let J = {(k,m) : b∗km , 0}
denote the set of non-zero parameters. The lasso estimator of b∗ is denoted as b̂. The b∗J
is the vector of true non-zero parameters with dimension [s × 1] and b̂J is the estimators
of b∗J. Let Z = IK ⊗ X′ where X is the [K p×T ]-matrix of right hand side lagged variables.
The y = vec(Y) and u = vec(U) are a vector of dimension [KT × 1]. The proof follows
Song and Bickel (2011) and Lee and Liu (2012).

Appendix D.1. Proof of asymptotic normality
Let β =

√
T (b − b∗). For the proof it is assumed that Ω is known. If Ω̂ is a consistent

estimator of Ω, it can be easily shown that the same steps apply. The lasso optimization
problem for the model y = Zb + u is given by:

L(β) =

(
y − Z

(
b∗ +

β
√

T

))′
(Ω ⊗ IT )

(
y − Z

(
b∗ +

β
√

T

))
+ T

K∑
k=1

K p∑
m=1

λkm

∣∣∣∣∣∣b∗km +
βkm
√

T

∣∣∣∣∣∣
Using β̂ = argmin

β

L(β) = argmin
β

(L(β) − L(0)) it follows

L(β) − L(0) =

(
y − Z

(
b∗ +

β
√

T

))′
(Ω ⊗ IT )

(
y − Z

(
b∗ +

β
√

T

))
− (y − Zb∗)′(Ω ⊗ IT )(y − Zb∗) + T

K∑
k=1

K p∑
m=1

λkm

(∣∣∣∣∣∣b∗km +
βkm
√

T

∣∣∣∣∣∣ − |b∗km|

)
= (y − Zb∗)′(Ω ⊗ IT )(y − Zb∗) −

(
Z
β
√

T

)′
(Ω ⊗ IT )(y − Zb∗)

+

(
Z
β
√

T

)′
(Ω ⊗ IT )

(
Z
β
√

T

)
− (y − Zb∗)′(Ω ⊗ IT )

(
−Z

β
√

T

)
− (y − Zb∗)′(Ω ⊗ IT )(y − Zb∗) + T

K∑
k=1

K p∑
m=1

λkm

(∣∣∣∣∣∣b∗km +
βkm
√

T

∣∣∣∣∣∣ − |b∗km|

)
=

1
T
β
′

Z′(Ω ⊗ IT )Zβ −
2
√

T
(y − Zb∗)′ (Ω ⊗ IT )Zβ

+ T
K∑

k=1

K p∑
m=1

λkm

(∣∣∣∣∣∣b∗km +
βkm
√

T

∣∣∣∣∣∣ − |b∗km|

)
.

By assumption (A1) for T → ∞

1
T
β
′

Z′(Ω ⊗ IT )Zβ = β
′

(
Ω ⊗

1
T

Z′Z
)
β

→ β
′

(Ω ⊗ Γ)β
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and since u ∼ N(0,Σ ⊗ I)

1
√

T
(y − Zb∗)′(Ω ⊗ IT )Z =

1
√

T
u′(Ω ⊗ IT )Z

d
−→ N(0,Ω ⊗ Γ).

Note that Ω = Σ−1 and

E
(

1
√

T
Z′(Ω ⊗ IT )uu′(Ω ⊗ IT )Z

1
√

T

)
=

1
√

T
Z′(Ω ⊗ IT )E(uu′)(Ω ⊗ IT )Z

1
√

T

=
1
T

Z′(ΩΣ ⊗ IT )(Ω ⊗ IT )Z

=
1
T

(Ω ⊗ Z′Z)→ Ω ⊗ Γ.

Under assumptions (A2) to (A4) the last term T
∑K

k=1
∑K p

m=1 λkm(|b∗km +
βkm√

T
| − |b∗km|) has the

following asymptotic behavior for T → ∞:
√

Tλkm(|b∗km +
βkm√

T
| − |b∗km|)→ 0 for b∗km , 0

√
Tλkm(|βkm|)→ ∞ for b∗km = 0

since for b∗km = 0, it holds that cT
√

T → ∞. For b∗km , 0 since aT
√

T → 0 it follows that
√

Tλkm → 0 and
√

T (|b∗km +
βkm√

T
| − |b∗km|)→ βkmsign(b∗km). As a result

L(β) − L(0)
d
−→ L(β) =

β′J(Ω ⊗ Γ)JβJ − 2βJDJ if βkm = 0∀(k,m) < J
∞ if otherwise

where βJ consists of βkm ∈ J and DJ
d
−→ N(0, (Ω ⊗ Γ)J. The objective function L(β) is

minimized by

β̂ =

β̂J = (Ω ⊗ Γ)−1
J DJ

β̂km = 0 ∀(k,m) < J

Thus, (R2) follows
β̂J =

√
T (b̂J − b∗J)

d
−→ N(0, (Ω ⊗ Γ)J)

Appendix D.2. Proof of selection consistency
For selection consistency to hold the probability that the estimate of a true zero para-

meter is unequal zero converges to zero as T goes to infinity, P(b̂km , 0)→ 0 ∀(k,m) < J.
Suppose there is a b̂km , 0 for (k,m) < J. The Karush-Kuhn-Tucker conditions give the
following:

0 =
δL(b̂)

b̂km
+ Tλkmsign(b̂km).

As shown by Song and Bickel (2011) for T → ∞ the first term is dominated by the second
term. Since cT

√
T → ∞, the equation cannot equal zero. Thus, P(b̂km , 0)→ 0.
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Appendix E. Simulation

Appendix E.1. Simulation Results

Figure E.2: Boxplots of MSEs and MSFEs relative to OLS for simulation 1

(a) Mean squared errors relative to OLS

(b) One-step ahead mean squared forecast errors relative to OLS

Note: DGP of simulation 1 is generated from a sparse two-country two-variable model with one lag. The
first boxplots show mean squared errors of estimates of parameter matrix B relative to OLS calculated as
the average over the deviations of each b̂km from the true value btrue

km for 100 replications of the simulation.
The second figure of boxplots shows one-step ahead mean squared forecast error relative to OLS for 100
simulation replications. MSFE is averaged over t and all variables.
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Figure E.3: Boxplots of MSEs and MSFEs relative to OLS for simulation 2

(a) Mean squared errors relative to OLS

(b) One-step ahead mean squared forecast errors relative to OLS

Note: DGP of simulation 2 is generated from a sparse three-country two-variable model with four lags. The
first boxplots show mean squared errors of estimates of parameter matrix B relative to OLS calculated as
the average over the deviations of each b̂km from the true value btrue

km for 100 replications of the simulation.
The second figure of boxplots shows one-step ahead mean squared forecast error relative to OLS for 100
simulation replications. MSFE is averaged over t and all variables.
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Table E.8: Diebold-Mariano Test: test statistic and p-values

lasso techniques Bayesian methods least squares

lasso post adaptive single
VAR lasso lasso SSSS CC restLS VAR OLS

horizon 1
(1) -0.37 -3.33 0.02 -6.53 -3.59 0.09 -0.74 -9.43

0.36 0.00 0.51 0.00 0.00 0.54 0.23 0.00
(2) -7.95 -9.81 -6.12 -17.90 -0.14 -0.86 -4.75 -15.56

0.00 0.00 0.00 0.00 0.45 0.20 0.00 0.00
(3) -16.86 - -16.79 - - - -0.70 -41.44

0.00 - 0.00 - - - 0.24 0.00

horizon 2
(1) 0.39 -2.69 0.33 -1.86 -1.58 0.78 0.97 -1.46

0.65 0.00 0.63 0.03 0.06 0.78 0.83 0.07
(2) -2.13 -2.19 -2.14 -2.12 -0.69 -1.41 -1.90 -2.13

0.02 0.01 0.02 0.02 0.25 0.08 0.03 0.02
(3) -2.11 - -2.11 - - - -0.29 -2.17

0.02 - 0.02 - - - 0.38 0.02

horizon 6
(1) 0.01 0.60 1.23 0.91 -0.52 1.99 1.14 1.03

0.50 0.73 0.89 0.82 0.30 0.98 0.87 0.85
(2) -1.07 -1.07 -1.10 -1.13 -1.11 -1.23 -1.13 -1.11

0.14 0.14 0.14 0.13 0.13 0.11 0.13 0.13
(3) -1.12 - -1.13 - - - -0.59 -1.12

0.13 - 0.13 - - - 0.28 0.13

Note: (1): Simulation 1 - DGP of simulation 1 is generated from a two-country two-variable model with
one lag, B has 16 coefficients, 10 true non-zero. (2): Simulation 2 - DGP of simulation 2 is generated
from a sparse three-country two-variable model with four lags, B has 144 coefficients, 34 are true non-zero.
(3): Simulation 3 - DGP of simulation 3 is generated from a four-country four-variable model with four
lags, B has 1024 coefficients, 432 are true non-zero. Values of Diebold-Mariano test statistic and p-values
which are presented in italic. MSFEs are compared to MSFEs of lassoPVAR. MSFEs are averaged over all
variables and countries and all MC draws.
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Appendix E.2. Simulation Results for the Model with Covariance Estimated with LS

Table E.9: Performance evaluation of estimators: covariance estimated with LS

lasso lasso post adaptive
PVAR VAR lasso lasso

Correct sparsity pattern in %
(1) 55.31 54.94 55.31 53.37
(2) 37.05 52.57 37.05 48.76

Fraction of relevant variables included in %
(1) 30.70 33.00 30.70 37.60
(2) 31.35 53.09 31.35 47.68

Number of variables included
(1) 4.99 5.39 4.99 6.06
(2) 40.67 77.80 40.67 68.64

Mean squared error relative to OLS
(1) 0.9632 0.9634 0.9692 0.9582
(2) 0.5711 0.6344 0.6512 0.6240

Table E.10: Mean squared forecast errors relative to OLS: covariance estimated with LS

lasso lasso post adaptive
PVAR VAR lasso lasso

MSFE for h = 1
(1) 0.9550 0.9555 0.9615 0.9550
(2) 0.7299 0.7733 0.7991 0.7627

MSFE for h = 2
(1) 0.9953 0.9953 0.9953 0.9953
(2) 0.7692 0.8161 0.8276 0.8057

MSFE for h = 6
(1) 1.0000 1.0000 1.0000 1.0000
(2) 0.9232 0.9317 0.9313 0.9300

MSFE average over 12 horizons
(1) 0.9959 0.9959 0.9964 0.9958
(2) 0.9065 0.9232 0.9262 0.9198

Note: (1): Simulation 1 - DGP of simulation 1 is generated from a two-country two-variable model with
one lag, B has 16 coefficients, 10 true non-zero. (2): Simulation 2 - DGP of simulation 2 is generated from
a sparse three-country two-variable model with four lags, B has 144 coefficients, 34 are true non-zero. The
correct sparsity pattern measures how often true relevant variables are included and irrelevant excluded.
The fraction of relevant variables included counts the number of true relevant variables included in the
models relative to the number of all true relevant variables. The number of variables included measured
the dimension reduction. MSEs are relative to OLS. MSFEs are relative to OLS and average over all t, all
countries and variables. All measures are averaged over 100 Monte Carlo replications.
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Appendix F. Forecasting Application

Appendix F.1. Penalty Parameters

Table F.11: Grid values for penalty parameters - Application

Model (1) Model (2) Model (3)

λ1
k 0.376 0.528 0.6193
λ2

k 0.3427 0.4809 0.5639
λ3

k 0.3094 0.4338 0.5085
λ4

k 0.2762 0.3867 0.4531
λ5

k 0.2429 0.3396 0.3977
λ6

k 0.2096 0.2925 0.3424
λ7

k 0.1764 0.2454 0.287
λ8

k 0.1431 0.1984 0.2316
λ9

k 0.1098 0.1513 0.1762
λ10

k 0.0765 0.1042 0.1208
λ11

k 0.0433 0.0571 0.0654
λ12

k 0.01 0.01 0.01

Appendix F.2. Application Results

Table F.12: Diebold-Mariano Test: test statistic and p-values. Relative to lassoPVAR for model (1)

lasso techniques Bayesian methods least squares

lasso post adaptive single
VAR lasso lasso SSSS CC restLS VAR OLS

h=1 -0.68 -2.48 -0.82 -7.77 -0.12 -2.48 -0.72 -6.95
0.25 0.01 0.21 0.00 0.45 0.01 0.24 0.00

h=2 0.36 -2.31 0.27 -3.69 1.28 -1.36 -0.03 -3.82
0.64 0.01 0.61 0.00 0.90 0.09 0.49 0.00

h=6 -1.19 -1.75 -1.29 -2.10 1.53 -1.59 -0.70 -1.92
0.12 0.04 0.10 0.02 0.94 0.06 0.24 0.03

h=12 -1.17 -0.94 -1.23 -1.54 1.04 0.67 0.87 -1.61
0.12 0.17 0.11 0.06 0.85 0.75 0.81 0.05

Note: The forecast period is from 2011:7 to 2016:6. Values of Diebold-Mariano test statistic and p-values
which are presented in italic. MSFEs are compared to MSFEs of lassoPVAR. MSFEs are averaged over all
variables and countries.
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Table F.13: Diebold-Mariano Test: test statistic and p-values. Relative to lassoPVAR for model (2) and
model (3)

N=10, G=2, p=6 N=6, G=4, p=6

single VAR mean single VAR mean

h=1 -4.39 -1.03 -0.17 -0.12
1.00 0.00 0.43 0.45

h=2 -3.00 -0.18 0.62 0.65
1.00 0.09 0.73 0.74

h=6 -1.88 0.80 -1.90 -1.18
0.99 0.10 0.03 0.12

h=12 -1.36 1.44 -1.36 -0.55
0.94 0.16 0.09 0.29

Note: The forecast period is from 2011:7 to 2016:6. Values of Diebold-Mariano test statistic and p-values
which are presented in italic. MSFEs are compared to MSFEs of lassoPVAR. MSFEs are averaged over all
variables and countries.

Table F.14: One-step ahead mean squared forecast error relative to OLS for model (1)

lasso techniques Bayesian methods least squares

lasso lasso post adaptive single
PVAR VAR lasso lasso SSSS CC restLS VAR

Variable specific mean squared forecast errors
CPI 0.5755 0.5768 0.6122 0.5777 1.4021 0.5612 0.5943 0.6253
IP 0.5661 0.5910 0.6211 0.5872 2.1424 0.6392 0.6285 0.7273
Country specific mean squared forecast errors
DE 0.5531 0.5846 0.6131 0.5908 1.0841 0.5163 0.5466 0.6234
FR 0.6176 0.6200 0.6809 0.6214 2.1145 0.6771 0.7055 0.7935
IT 0.7265 0.7563 0.7258 0.7485 2.3525 0.7998 0.8594 0.9906
UK 0.5956 0.6010 0.6119 0.5924 2.3022 0.6804 0.6064 0.6220
US 0.3613 0.3575 0.4515 0.3593 1.0080 0.3273 0.3389 0.3520
Mean squared forecast errors averaged over countries and variables
Average 0.5708 0.5839 0.6166 0.5825 1.7722 0.6002 0.6114 0.6763

Note: The forecast period is from 2011:7 to 2016:6. MSFEs are averaged over all t and are relative to OLS,
MSFEs smaller than one indicate better performance relative to OLS.
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Table F.15: Two-steps ahead mean squared forecast error relative to OLS for model (1)

lasso techniques Bayesian methods least squares

lasso lasso post adaptive single
PVAR VAR lasso lasso SSSS CC restLS VAR

Variable specific mean squared forecast errors
CPI 0.6831 0.6936 0.7029 0.6924 1.7323 0.6530 0.6676 0.6987
IP 0.5145 0.5020 0.6019 0.5028 1.6788 0.4968 0.5423 0.5919
Country specific mean squared forecast errors
DE 0.5570 0.5499 0.6342 0.5574 1.1186 0.4938 0.5380 0.6127
FR 0.6479 0.6352 0.7464 0.6391 1.9491 0.6046 0.6771 0.7256
IT 0.7256 0.7162 0.7846 0.7137 1.8606 0.6898 0.7822 0.8296
UK 0.6051 0.6276 0.6050 0.6186 2.5384 0.6755 0.5821 0.5822
US 0.4584 0.4603 0.4917 0.4592 1.0611 0.4107 0.4454 0.4764
Mean squared forecast errors averaged over countries and variables
Average 0.5988 0.5978 0.6524 0.5976 1.7055 0.5749 0.6050 0.6453

Note: The forecast period is from 2011:7 to 2016:6. MSFEs are averaged over all t and are relative to OLS,
MSFEs smaller than one indicate better performance relative to OLS.

Table F.16: Six-steps ahead mean squared forecast error relative to OLS for model (1)

lasso techniques Bayesian methods least squares

lasso lasso post adaptive single
PVAR VAR lasso lasso SSSS CC restLS VAR

Variable specific mean squared forecast errors
CPI 0.7811 0.8054 0.7730 0.8070 2.9802 0.6926 0.7749 0.7961
IP 0.6159 0.6192 0.7015 0.6216 2.3033 0.6323 0.6556 0.7103
Country specific mean squared forecast errors
DE 0.6315 0.6349 0.7076 0.6410 1.6743 0.5625 0.6466 0.7042
FR 0.7882 0.7950 0.8618 0.7986 3.8808 0.7126 0.8389 0.9034
IT 0.7810 0.7865 0.8369 0.7909 1.9969 0.7648 0.8561 0.9075
UK 0.7575 0.8015 0.6934 0.7964 3.6124 0.7688 0.7036 0.6908
US 0.5342 0.5435 0.5865 0.5444 2.0444 0.5035 0.5311 0.5602
Mean squared forecast errors averaged over countries and variables
Average 0.6985 0.7123 0.7372 0.7143 2.6418 0.6624 0.7153 0.7532

Note: The forecast period is from 2011:7 to 2016:6. MSFEs are averaged over all t and are relative to OLS,
MSFEs smaller than one indicate better performance relative to OLS.
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Table F.17: Twelve-steps ahead mean squared forecast error relative to OLS for model (1)

lasso techniques Bayesian methods least squares

lasso lasso post adaptive single
PVAR VAR lasso lasso SSSS CC restLS VAR

Variable specific mean squared forecast errors
CPI 0.7792 0.7933 0.7891 0.7934 4.0400 0.7063 0.7686 0.7884
IP 0.7954 0.7970 0.8220 0.7972 5.0966 0.8166 0.7864 0.7697
Country specific mean squared forecast errors
DE 0.8006 0.8077 0.8166 0.8084 4.2114 0.7753 0.7918 0.7904
FR 0.8124 0.8124 0.8628 0.8123 6.1899 0.7802 0.8138 0.8401
IT 0.7929 0.7994 0.8211 0.8001 5.0366 0.7739 0.8021 0.7880
UK 0.9751 0.9955 0.9204 0.9950 3.3784 0.9534 0.9274 0.9201
US 0.5556 0.5604 0.6068 0.5606 4.0252 0.5245 0.5524 0.5565
Mean squared forecast errors averaged over countries and variables
Average 0.7873 0.7951 0.8056 0.7953 4.5683 0.7615 0.7775 0.7790

Note: The forecast period is from 2011:7 to 2016:6. MSFEs are averaged over all t and are relative to OLS,
MSFEs smaller than one indicate better performance relative to OLS.

Table F.18: Average mean squared forecast error relative to OLS over all forecast horizons for model (1)

lasso techniques Bayesian methods least squares

lasso lasso post adaptive single
PVAR VAR lasso lasso SSSS CC restLS VAR

Variable specific mean squared forecast errors
CPI 0.7320 0.7478 0.7428 0.7478 2.6527 0.6684 0.7278 0.7517
IP 0.6247 0.6261 0.6845 0.6263 2.9632 0.6372 0.6490 0.6793
Country specific mean squared forecast errors
DE 0.6290 0.6318 0.6828 0.6347 2.3950 0.5851 0.6298 0.6706
FR 0.7399 0.7413 0.7990 0.7417 3.7452 0.7065 0.7692 0.8065
IT 0.7339 0.7382 0.7742 0.7394 2.7701 0.7059 0.7935 0.8345
UK 0.7922 0.8214 0.7547 0.8167 3.1534 0.7997 0.7581 0.7544
US 0.4968 0.5020 0.5576 0.5026 1.9760 0.4667 0.4914 0.5116
Mean squared forecast errors averaged over countries and variables
Average 0.6783 0.6869 0.7136 0.6870 2.8079 0.6528 0.6884 0.7155

Note: The forecast period is from 2011:7 to 2016:6. MSFEs are averaged over all t and are relative to OLS,
MSFEs smaller than one indicate better performance relative to OLS.

The tables F.14, F.15, F.16 and F.17 show the forecast evaluation split up into country
and variable averages for one-step ahead, two-steps ahead, six-steps ahead and twelve-
steps ahead forecasts. Table F.18 presents the average over all twelve forecast horizons.
The differences in forecast performance along the two variables are exploited by averaging
over all countries for each variable. The differences across countries are evaluated based
on the MSFE averaged over the two variables.
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lassoPVAR outperforms OLS for all variables for all horizons. The same holds for
all countries. For one-step ahead forecasts lassoPVAR dominates the other estimators for
IP and FR, IT and the UK. For higher forecasts horizons CC performs best in general.
On average as for the six-steps ahead forecasts, lassoPVAR has the lowest MSFE for IP
forecasts. For all horizons, forecast accuracy of the lassoPVAR is improved compared to
lassoVAR for all countries and variables.

Figure F.4: Sparsity pattern of the coefficient matrix for model (1): lag 4 and 5

(a) Lag 4 (b) Lag 5

Note: Sparsity pattern of the coefficient matrix B. Negative values are multiplied by -1.

Figure F.5: Sparsity pattern of the covariance matrix for model (1)
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